A Stochastic Smoothing Algorithm for Semidefinite Programming

نویسندگان

  • Alexandre d'Aspremont
  • Noureddine El Karoui
چکیده

We use rank one Gaussian perturbations to derive a smooth stochastic approximation of the maximum eigenvalue function. We then combine this smoothing result with an optimal smooth stochastic optimization algorithm to produce an efficient method for solving maximum eigenvalue minimization problems, and detail a variant of this stochastic algorithm with monotonic line search. Overall, compared to classical smooth algorithms, this method runs a larger number of significantly cheaper iterations and, in certain precision/dimension regimes, its total complexity is lower than that of deterministic smoothing algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A path-following infeasible interior-point algorithm for semidefinite programming

We present a new algorithm obtained by changing the search directions in the algorithm given in [8]. This algorithm is based on a new technique for finding the search direction and the strategy of the central path. At each iteration, we use only the full Nesterov-Todd (NT)step. Moreover, we obtain the currently best known iteration bound for the infeasible interior-point algorithms with full NT...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

Smoothing techniques for solving semidefinite programs with many constraints.dvi

We use smoothing techniques to solve approximately mildly structured semidefinite programs with many constraints. As smoothing techniques require a specific problem format, we introduce an alternative problem formulation that fulfills the structural assumptions. The resulting algorithm has a complexity that depends linearly both on the number of constraints and on the inverse of the accuracy. S...

متن کامل

Semismooth Matrix Valued Functions1

Matrix valued functions play an important role in the development of algorithms for semidefinite programming problems. This paper studies generalized differential properties of such functions related to nonsmooth-smoothing Newton methods. The first part of this paper discusses basic properties such as the generalized derivative, Rademacher’s theorem, B-derivative, directional derivative, and se...

متن کامل

MAT 585: Exact Recovery of the Semidefinite Relaxation for Stochastic Block Model

Today we consider a semidefinite programming relaxation algorithm for SBM and derive conditions for exact recovery. The main ingredient for the proof will be duality theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2014